跳到主要內容區塊

分類清單

王琬菁

王婉菁
職稱 副教授
學歷 國立臺灣大學 分子醫學研究所 博士
辦公室: 生物醫學大樓 六樓 R606 室
電話: 886-2-2826-7117
Email: wangwj@ym.edu.tw
 
經歷
2014迄今   

國立陽明大學 生化暨分子生物研究所 助理教授

2008-2014

Memorial Sloan-Kettering Cancer Center Cell Biology program 博士後研究

2006-2007

中央研究院 生物化學研究所 博士後研究

2005-2006 

國立臺灣大學 分子醫學研究所 博士後研究

榮譽
2019   

107學年度陽明大學良師益友導師

2019 

科技部「優秀年輕學者研究計畫」

2016 

105學年財團法人沈力揚教授醫學教育獎學紀念基金會/講師級研究與進修獎助金

2016 

104學年度陽明大學良師益友導師

2016 

科技部「優秀年輕學者研究計畫」

2015 

103學年度陽明大學良師益友導師

2014 

103 學年科技部補助大專校院延攬特殊優秀人才

2008 

長庚大學傑出校友獎

指導學生獲獎
2019   

指導黃芊詠榮獲陽明大學研究生論文競賽壁報論文佳作。

2019

指導林詠萱榮獲陽明大學研究生論文競賽壁報論文優等獎。

2018

指導羅芊卉獲得科技部補助博士班出國參加 The ASCB/EMBO 2018 Annual meeting in San Diego, CA.

2018

指導蘇亭語獲得陽明大學生科院院長獎

2017

指導周柏君獲得陽明大學生科院院長獎

2017

指導羅芊卉榮獲陽明大學尹詢諾優秀論文獎比賽佳作

2017

指導周柏君榮獲第25屆中華民國細胞及分子生物學學會優秀壁報論文獎

專長--纖毛與相關疾病研究, 中心粒生理功能, 細胞生物學, 生化及分子生物學, 訊息傳遞
研究方向
(一) 中心粒相關生理功能探討:中心粒(Centriole)是細胞內不可或缺的構造。中心粒與細胞內蛋白共組成中心體(或稱微管組織中心,MTOC),這構造對細胞的運動,爬行及細胞分裂均扮演重要的角色。實驗室透過基因編輯(CRISPR/Cas9)建構了一系列中心粒功能異常的細胞株,藉由這些細胞,我們有系統地去了解細胞如何透過中心粒去維持其正常的生理功能。
(二) 纖毛形成與功能維持:纖毛是由中心粒頂端所延伸出來的一個特化構造,功能在參與細胞內的訊息傳遞。已知的研究證實纖毛的結構或功能異常會導致很多遺傳性疾病(ciliopathy),顯示研究纖毛的重要性。實驗室利用蛋白質譜的方式找到許多參與纖毛生合成過程及功能維持的蛋白,藉由研究這些蛋白的功能,我們希冀可以有效率的解開纖毛與疾病間的關係。
The centriole is an evolutional conserved organelle and can be found in most of the cells in our body. Centrioles are microtubule-based structures that have two major roles in animal cells. In cycling cells, centrioles serve as the core structure of the centrosomes that function as microtubule-organization centers (MTOC). Centrioles also function as basal bodies that seed the assembly of the primary cilia. Abnormalities in the number of centrosomes are commonly found in cancers, and basal body dysfunction has been implicated in many human diseases related to cilia function.
Through a SILAC-based proteomic screen, we have acquired a centriole proteome that allows us to study the role of centrioles in detail. With this centriole proteome, we ‘ve identified many proteins at the centrioles and discover their roles in regulating centrosome or cilia functions. The long-term goal of my research is to understand the biogenesis and function of centrioles/cilia, both in the normal cellular context and disease. Specifically, I will continue to shed light on molecular mechanisms underlying the following processes:
(1) Understand the biological functions of centrioles.
(2) The role of centriole proteins in the regulation of cilia biogenesis and activity.
研究著作

Lo CH, Lin IH, Yang TT, Huang YC, Tanos BT, Chou PC, Chang CC, Tsay YG, Liao JC, Wang WJ. Phosphorylation of CEP83 by TTBK2 is necessary for cilia initiation. J Cell Biol. 2019. Aug 27. pii: jcb.201811142. doi: 10.1083/jcb.201811142.

 

Chang CH, Zanini M, Shirvani H, Cheng JS, Yu H, Feng CH, Mercier AL, Hung SY, Forget A, Wang CH, Cigna SM, Lu IL, Chen WY, Leboucher S, Wang WJ, Ruat M, Spassky N, Tsai JW, Ayrault O. Atoh1 Controls Primary Cilia Formation to Allow for SHH-Triggered Granule Neuron Progenitor Proliferation. Dev Cell. 2019 Jan 28;48(2):184-199.e5.

 

Hsiao CJ, Chang CH, Ibrahim RB, Lin IH, Wang CH, Wang WJ, Tsai JW. Gli2 modulates cell cycle re-entry through autophagy-mediated regulation of the length of primary cilia. J Cell Sci. 2018 Dec 17;131(24)

 

Hsu WH, Wang WJ, Lin WY, Juang YM, Lai CC, Liao JC, and Chen HC. Adducin-1 is essential for spindle pole integrity through its interaction with TPX2. EMBO Report. 2018 Aug;19(8). pii: e45607. doi: 10.15252/embr.201745607. Epub 2018 Jun 19.

 

Weng RR, Yang TT, Huang CE, Chang CW, Wang WJ, Liao JC. Super-Resolution Imaging Reveals TCTN2 Depletion-Induced IFT88 Lumen Leakage and Ciliary Weakening. J Biophys J. 2018 Jun 1. pii: S0006-3495(18)30622-2.

 

Yang TT, Chong WM, Wang WJ, Mazo G, Tanos B, Chen Z, Tran TMN, Chen YD, Weng RR, Huang CE, Jane WN, Tsou MB, Liao JC. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat Commun. 2018 May 22;9(1):2023. doi: 10.1038/s41467-018-04469-1.

 

Li HR, Chiang WC, Chou PC, Wang WJ, Huang JR. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. J Biol Chem. 2018 Apr 20;293(16):6090-6098. doi: 10.1074/jbc.AC117.001037. Epub 2018 Mar 6.

 

He Mu, Ye WN, Wang WJ, Sison E, Jan YN, Jan LY. Mammalian calcium activated chloride channel drives epithelium morphogenesis through control of phosphoinositides. PNAS. 2017 Dec 26;114(52):E11161-E11169. doi: 10.1073/pnas.1714448115. Epub 2017 Dec 11.

 

Chen HY, Wu CT, Tang CC, Lin YN, Wang WJ, Tang TK. Human microcephaly protein RTTN interacts with STIL and is required to build full-length centrioles. Nat Commun. 2017 Aug 15;8(1): 247. doi: 10.1038/s41467-017-00305-0.

 

Mazo G, Soplop N, Wang WJ, Uryu K, Tsou MB. Spatial Control of Primary Ciliogenesis by Subdistal Appendages Alters Sensation-Associated Properties of Cilia. Dev Cell. 2016 Nov 21;39(4):424-437.

 

Wang WJ, Acehan D, Kao CH, Jane WN, Uryu K, Tsou MF. 2015. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly.Elife26;4. pii: e10586.

 

Yang TT, Su J, Wang WJ, Craige B, Witman GB, Tsou MF, Liao JC. 2015. Superresolution Pattern Recognition Reveals the Architectural Map of the Ciliary Transition Zone.Sci Rep.14;5:14096.

 

Izquierdo D, Wang WJ, Uryu K, Tsou MF. 2014. Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion.Cell Rep. 21;8(4):957-65.

 

Wang WJ, Tay HG, Soni RK, Perumal GS, Goll MG, Macaluso FP, Asara JM, Amack JD, Tsou MF. 2013. CEP162 is an axoneme-recognition protein promoting transition zone assembly at the cilia base. Nature Cell Biol. 15(6): 591-601.

 

Tanos BE, Yang HJ, Soni RK, Wang WJ, Macaluso FP, Asara JM, Tsou MF. 2013. Centriole-distal appendages promote membrane docking, leading to cilia initiation. Genes& Dev. 27(2): 163-8.

 

Wang WJ, Soni RK, Uryu K, Tsou MF. 2011. The conversion of centrioles to centrosome: essential coupling of duplication with segregation. J Cell Biol. 193(4): 727-39.

 

Tsou MF, Wang WJ, George KA, Uryu K, Stearns T, Jallepalli PV. 2009. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell. 17(3): 344-354 (co-first author)

 

Lin YM, Chen YR, Lin JR, Wang WJ, Inoko A, Inagaki M, Wu YC, and Chen RH. 2008. eIF3k regulates apoptosis in epithelial cells by releasing caspase 3 from keratin-containing inclusion. J Cell Sci. 121(Pt 14): 2382-93.

 

Wang WJ, Kuo JC, Ku W, Lee YR, Lin FC, Chang YL, Lin YM, Chen CH, Huang YP, Chiang MJ, Yeh SW, Wu PR, Shen CH, Wu CT, and Chen RH. 2007. The tumor suppressor DAPK is reciprocally regulated by tyrosine kinase Src and phosphatase LAR. Mol. Cell. 27(5): 701-16. (selected as “The Editors’ choice in Sci. STKE,” 2007. Reciprocal regulation of DAPK. Issue 403, p.331)

 

Kuo JC, Wang WJ, Yao CC, Wu PR, and Chen RH. 2006. The tumor suppressor DAPK inhibits cell motility by blocking integrin-mediated polarity pathway. J Cell Biol. 172(4): 619-31.

 

Chen RH, Wang WJ, and Kuo JC. 2006. The tumor suppressor DAP-kinase links cell adhesion and cytoskeleton reorganization to cell death regulation. J Biomed Sci. 13(2): 193-199.

 

Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF, Chen RH. 2005. Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J. 24(2): 294-304.

 

Wang WJ, Kuo JC, Yao CC, Chen RH. 2002. DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J Cell Biol. 159(1): 169-79.

 

Lin KH, Wang WJ, Wu YH, Cheng SY. 2002. Activation of antimetastatic Nm23-H1 gene expression by estrogen and its alpha-receptor. Endocrinology. 143(2): 467-75.

 

瀏覽數  
將此文章推薦給親友
請輸入此驗證碼